The Plancherel decomposition for a reductive symmetric space I. Spherical functions

نویسنده

  • E. P. van den Ban
چکیده

We prove the Plancherel formula for spherical Schwartz functions on a reductive symmetric space. Our starting point is an inversion formula for spherical smooth compactly supported functions. The latter formula was earlier obtained from the most continuous part of the Plancherel formula by means of a residue calculus. In the course of the present paper we also obtain new proofs of the uniform tempered estimates for normalized Eisenstein integrals and of the Maass–Selberg relations satisfied by the associated C-functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Plancherel decomposition for a reductive symmetric space II. Representation theory

We obtain the Plancherel decomposition for a reductive symmetric space in the sense of representation theory. Our starting point is the Plancherel formula for spherical Schwartz functions, obtained in part I. The formula for Schwartz functions involves Eisenstein integrals obtained by a residual calculus. In the present paper we identify these integrals as matrix coefficients of the generalized...

متن کامل

The Action of Intertwining Operators on Spherical Vectors in the Minimal Principal Series of a Reductive Symmetric Space

We study the action of standard intertwining operators on H-fixed generalized vectors in the minimal principal series of a reductive symmetric space G/H of Harish-Chandra's class. The main result is that-after an appropriate normalization-this action is unitary for the unitary principal series. This is an extension of previous work under more restrictive hypotheses on G and H. The present resul...

متن کامل

Spherical Transform and Jacobi Polynomials on Root Systems of Type Bc

Let R be a root system of type BC in a = Rr of general positive multiplicity. We introduce certain canonical weight function on Rr which in the case of symmetric domains corresponds to the integral kernel of the Berezin transform. We compute its spherical transform and prove certain Bernstein-Sato type formula. This generalizes earlier work of Unterberger-Upmeier, van Dijk-Pevsner, Neretin and ...

متن کامل

The Principal Series for a Reductive Symmetric Space, Ii. Eisenstein Integrals. :)i ( 2 a Qc ; X 2 G)

Contents 0 Introduction 2 1 Notations and preliminaries 5 2 Invariant diierential operators 9 3 Deenition of the Eisenstein integral 13 4 Relation with the principal series 14 5 Finite dimensional class (1,1) representations 20 6 Functions of S-polynomial growth 23 7 S-genericity 25 8 Projection along innnitesimal characters 25 9 Estimates for j 30 10 Initial estimates for Eisenstein integrals ...

متن کامل

On the Algebra of K-invariant Vector Fields on a Symmetric Space G/k

When G is a complex reductive algebraic group and G/K is a reductive symmetric space, the decomposition of C[G/K] as a K-module was obtained (in a non-constructive way) by R. Richardson, generalizing the celebrated result of Kostant-Rallis for the linearized problem (the harmonic decomposition of the isotropy representation). To obtain a constructive version of Richardson’s results, this paper ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002